Proteomic comparison of Gibberella moniliformis in limited-nitrogen (fumonisin-inducing) and excess-nitrogen (fumonisin-repressing) conditions.

نویسندگان

  • Yoon-E Choi
  • Robert A E Butchko
  • Won-Bo Shim
چکیده

The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisininducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis.

Fumonisins are polyketide-derived mycotoxins produced by the filamentous fungus Gibberella moniliformis (anamorph Fusarium verticillioides). Wild-type strains of the fungus produce predominantly four B-series fumonisins, designated FB(1), FB(2), FB(3), and FB(4). Recently, a cluster of 15 putative fumonisin biosynthetic genes (FUM) was described in G. moniliformis. We have now conducted a funct...

متن کامل

Detection of fumonisin producing Fusarium verticillioides in paddy (Oryza sativa L.) using polymerase chain reaction (PCR)

The study reports the occurrence of fumonisin producing Fusarium verticillioides in 90 samples of stored paddy (Oryza sativa L.) collected from different geographical regions of Karnataka, India. Fumonisin producing F. verticillioides was identified based on micromorphological characteristics and PCR using two sets of primers. One set of primers was F. verticillioides species specific, which se...

متن کامل

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) diff...

متن کامل

Involvement of FvSet1 in Fumonisin B1 Biosynthesis, Vegetative Growth, Fungal Virulence, and Environmental Stress Responses in Fusarium verticillioides

Fusarium verticillioides (teleomorph, Gibberella moniliformis) is an important plant pathogen that causes seedling blight, stalk rot, and ear rot in maize (Zea mays). During infection, F. verticillioides produce fumonsins B1 (FB1) that pose a serious threat to human and animal health. Recent studies showed that Set1, a methyltransferase of H3K4, was responsible for toxin biosynthesis in filamen...

متن کامل

Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides

Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microbiology and biotechnology

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2012